初始化仓库
This commit is contained in:
commit
f8b39b149c
8
.gitignore
vendored
Normal file
8
.gitignore
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
*.pdf
|
||||
*.png
|
||||
.DS_Store
|
||||
extracted_images/
|
||||
.vscode/
|
||||
output/
|
||||
input/
|
||||
output/
|
||||
40
pdf/extract_images.py
Normal file
40
pdf/extract_images.py
Normal file
@ -0,0 +1,40 @@
|
||||
import fitz # PyMuPDF
|
||||
import os
|
||||
from PIL import Image
|
||||
import io
|
||||
|
||||
def extract_images_from_pdf(pdf_path, output_folder):
|
||||
# 打开PDF文件
|
||||
document = fitz.open(pdf_path)
|
||||
# 确保输出文件夹存在
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
|
||||
# 遍历每一页
|
||||
for page_number in range(len(document)):
|
||||
page = document.load_page(page_number)
|
||||
# 获取页面中的图片
|
||||
images = page.get_images(full=True)
|
||||
|
||||
for image_index, img in enumerate(images):
|
||||
xref = img[0]
|
||||
# 提取图片
|
||||
base_image = document.extract_image(xref)
|
||||
image_bytes = base_image["image"]
|
||||
image_ext = base_image["ext"]
|
||||
|
||||
# 使用Pillow处理图片
|
||||
image = Image.open(io.BytesIO(image_bytes))
|
||||
# 构建图片文件名
|
||||
image_filename = f"page_{page_number + 1}_img_{image_index + 1}.{image_ext}"
|
||||
image_path = os.path.join(output_folder, image_filename)
|
||||
# 保存图片
|
||||
image.save(image_path)
|
||||
print(f"保存图片: {image_path}")
|
||||
|
||||
# 关闭文档
|
||||
document.close()
|
||||
|
||||
# 使用示例
|
||||
pdf_path = "/Users/xiangyu/Documents/余氏宗谱(新洲区等支族)/第一册/(5)余氏彩页 P17-40.pdf" # 替换为你的PDF文件路径
|
||||
output_folder = "extracted_images" # 替换为你想要保存图片的文件夹
|
||||
extract_images_from_pdf(pdf_path, output_folder)
|
||||
486
pdf/pdf_processor.py
Normal file
486
pdf/pdf_processor.py
Normal file
@ -0,0 +1,486 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import fitz # PyMuPDF
|
||||
import tkinter as tk
|
||||
from tkinter import ttk
|
||||
from PIL import Image, ImageTk
|
||||
import tkinter.messagebox as messagebox
|
||||
import datetime
|
||||
|
||||
class PDFProcessor:
|
||||
def __init__(self):
|
||||
self.image = None
|
||||
self.regions = []
|
||||
|
||||
def convert_pdf_to_image(self, pdf_path, page_num=0):
|
||||
# 打开PDF文件
|
||||
doc = fitz.open(pdf_path)
|
||||
page = doc[page_num]
|
||||
|
||||
# 将PDF页面转换为图片
|
||||
pix = page.get_pixmap(matrix=fitz.Matrix(2, 2)) # 2倍缩放以获得更好的质量
|
||||
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
||||
|
||||
# 转换为OpenCV格式
|
||||
self.image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||||
return self.image
|
||||
|
||||
def detect_regions(self):
|
||||
if self.image is None:
|
||||
return []
|
||||
|
||||
# 转换为灰度图
|
||||
gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# 使用高斯模糊减少噪声
|
||||
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
||||
|
||||
# 自适应阈值处理
|
||||
binary = cv2.adaptiveThreshold(
|
||||
blurred,
|
||||
255,
|
||||
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
||||
cv2.THRESH_BINARY_INV,
|
||||
11,
|
||||
2
|
||||
)
|
||||
|
||||
# 膨胀操作
|
||||
kernel = np.ones((3,3), np.uint8)
|
||||
dilated = cv2.dilate(binary, kernel, iterations=1)
|
||||
|
||||
# 查找所有轮廓
|
||||
contours, hierarchy = cv2.findContours(
|
||||
dilated,
|
||||
cv2.RETR_TREE,
|
||||
cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
|
||||
# 收集所有可能的矩形区域
|
||||
candidates = []
|
||||
min_area = 1000
|
||||
|
||||
for cnt in contours:
|
||||
peri = cv2.arcLength(cnt, True)
|
||||
approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
|
||||
|
||||
x, y, w, h = cv2.boundingRect(cnt)
|
||||
area = w * h
|
||||
aspect_ratio = w / float(h) if h != 0 else 0
|
||||
|
||||
if (area > min_area and
|
||||
w > 30 and h > 30 and
|
||||
0.1 < aspect_ratio < 10):
|
||||
|
||||
if len(approx) >= 4:
|
||||
candidates.append((x, y, w, h))
|
||||
|
||||
# 按宽度从大到小排序
|
||||
candidates.sort(key=lambda x: x[2], reverse=True)
|
||||
|
||||
# 查找宽高一致的五个区域
|
||||
target_regions = []
|
||||
for i, (x1, y1, w1, h1) in enumerate(candidates):
|
||||
similar_regions = [(x1, y1, w1, h1)]
|
||||
|
||||
# 在剩余区域中查找宽高相似的区域
|
||||
for x2, y2, w2, h2 in candidates[i+1:]:
|
||||
# 检查宽高是否相似(允许2%的误差)
|
||||
if (abs(w2 - w1) / w1 < 0.02 and
|
||||
abs(h2 - h1) / h1 < 0.02):
|
||||
similar_regions.append((x2, y2, w2, h2))
|
||||
|
||||
# 如果找到至少5个相似区域
|
||||
if len(similar_regions) >= 5:
|
||||
# 按y坐标排序(从上到下)
|
||||
similar_regions.sort(key=lambda x: x[1])
|
||||
target_regions = similar_regions[:5]
|
||||
break
|
||||
|
||||
self.regions = target_regions
|
||||
return self.regions
|
||||
|
||||
class PDFViewer:
|
||||
def __init__(self, root):
|
||||
self.root = root
|
||||
self.root.title("PDF区域检测器")
|
||||
|
||||
# 设置窗口初始大小
|
||||
self.root.geometry("1024x768")
|
||||
|
||||
# 创建主框架
|
||||
self.main_frame = ttk.Frame(self.root)
|
||||
self.main_frame.pack(fill=tk.BOTH, expand=True)
|
||||
|
||||
# 创建工具栏
|
||||
self.toolbar = ttk.Frame(self.main_frame)
|
||||
self.toolbar.pack(side=tk.TOP, fill=tk.X)
|
||||
|
||||
# 添加缩放控制
|
||||
self.zoom_label = ttk.Label(self.toolbar, text="缩放: ")
|
||||
self.zoom_label.pack(side=tk.LEFT, padx=5)
|
||||
|
||||
self.zoom_scale = ttk.Scale(
|
||||
self.toolbar,
|
||||
from_=10,
|
||||
to=200,
|
||||
orient=tk.HORIZONTAL,
|
||||
length=200,
|
||||
command=self._on_zoom_change
|
||||
)
|
||||
self.zoom_scale.set(30) # 设置初始缩放为30%
|
||||
self.zoom_scale.pack(side=tk.LEFT, padx=5)
|
||||
|
||||
# 创建框架来容纳画布和滚动条
|
||||
self.frame = ttk.Frame(self.main_frame)
|
||||
self.frame.pack(fill=tk.BOTH, expand=True)
|
||||
|
||||
# 创建水平和垂直滚动条
|
||||
self.v_scrollbar = ttk.Scrollbar(self.frame, orient="vertical")
|
||||
self.h_scrollbar = ttk.Scrollbar(self.frame, orient="horizontal")
|
||||
self.v_scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
|
||||
self.h_scrollbar.pack(side=tk.BOTTOM, fill=tk.X)
|
||||
|
||||
# 创建画布并配置滚动
|
||||
self.canvas = tk.Canvas(
|
||||
self.frame,
|
||||
yscrollcommand=self.v_scrollbar.set,
|
||||
xscrollcommand=self.h_scrollbar.set,
|
||||
bg='gray90' # 添加背景色以便于区分
|
||||
)
|
||||
self.canvas.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
|
||||
|
||||
# 配置滚动条
|
||||
self.v_scrollbar.config(command=self.canvas.yview)
|
||||
self.h_scrollbar.config(command=self.canvas.xview)
|
||||
|
||||
# 绑定鼠标事件
|
||||
self.canvas.bind('<MouseWheel>', self._on_mousewheel_y)
|
||||
self.canvas.bind('<Shift-MouseWheel>', self._on_mousewheel_x)
|
||||
self.canvas.bind('<Button-4>', self._on_mousewheel_y)
|
||||
self.canvas.bind('<Button-5>', self._on_mousewheel_y)
|
||||
self.canvas.bind('<Shift-Button-4>', self._on_mousewheel_x)
|
||||
self.canvas.bind('<Shift-Button-5>', self._on_mousewheel_x)
|
||||
self.canvas.bind('<ButtonPress-1>', self._start_drag)
|
||||
self.canvas.bind('<B1-Motion>', self._drag)
|
||||
|
||||
# 添加Ctrl+鼠标滚轮缩放
|
||||
self.canvas.bind('<Control-MouseWheel>', self._on_zoom_wheel)
|
||||
|
||||
self.processor = PDFProcessor()
|
||||
self.current_image = None
|
||||
self.current_regions = None
|
||||
self.zoom_factor = 0.3 # 改为30%的初始缩放
|
||||
|
||||
# 添加适应窗口大小的按钮
|
||||
self.fit_button = ttk.Button(
|
||||
self.toolbar,
|
||||
text="适应窗口",
|
||||
command=self._fit_to_window
|
||||
)
|
||||
self.fit_button.pack(side=tk.LEFT, padx=5)
|
||||
|
||||
# 绑定窗口大小改变事件
|
||||
self.root.bind('<Configure>', self._on_window_resize)
|
||||
|
||||
# 添加页面控制
|
||||
self.page_frame = ttk.Frame(self.toolbar)
|
||||
self.page_frame.pack(side=tk.LEFT, padx=5)
|
||||
|
||||
self.page_label = ttk.Label(self.page_frame, text="页码:")
|
||||
self.page_label.pack(side=tk.LEFT)
|
||||
|
||||
self.current_page = tk.StringVar(value="1")
|
||||
self.total_pages = 1
|
||||
|
||||
self.page_entry = ttk.Entry(self.page_frame, textvariable=self.current_page, width=5)
|
||||
self.page_entry.pack(side=tk.LEFT, padx=2)
|
||||
|
||||
self.total_pages_label = ttk.Label(self.page_frame, text="/1")
|
||||
self.total_pages_label.pack(side=tk.LEFT)
|
||||
|
||||
self.prev_button = ttk.Button(self.page_frame, text="上一页", command=self._prev_page)
|
||||
self.prev_button.pack(side=tk.LEFT, padx=2)
|
||||
|
||||
self.next_button = ttk.Button(self.page_frame, text="下一页", command=self._next_page)
|
||||
self.next_button.pack(side=tk.LEFT, padx=2)
|
||||
|
||||
# 修改确认按钮文本
|
||||
self.confirm_button = ttk.Button(
|
||||
self.toolbar,
|
||||
text="提取所有页面文字",
|
||||
command=self._extract_text
|
||||
)
|
||||
self.confirm_button.pack(side=tk.LEFT, padx=5)
|
||||
|
||||
self.pdf_path = None
|
||||
self.doc = None
|
||||
|
||||
# 加载默认PDF文件
|
||||
default_pdf = "test.pdf"
|
||||
try:
|
||||
self.load_pdf(default_pdf)
|
||||
except Exception as e:
|
||||
messagebox.showerror("错误", f"无法加载默认PDF文件:{str(e)}")
|
||||
|
||||
def load_pdf(self, pdf_path):
|
||||
"""加载PDF并显示"""
|
||||
self.pdf_path = pdf_path
|
||||
self.doc = fitz.open(pdf_path)
|
||||
self.total_pages = len(self.doc)
|
||||
self.total_pages_label.configure(text=f"/{self.total_pages}")
|
||||
|
||||
self._load_current_page()
|
||||
|
||||
def _load_current_page(self):
|
||||
"""加载当前页面"""
|
||||
try:
|
||||
page_num = int(self.current_page.get()) - 1
|
||||
if 0 <= page_num < self.total_pages:
|
||||
image = self.processor.convert_pdf_to_image(self.pdf_path, page_num)
|
||||
regions = self.processor.detect_regions()
|
||||
self.current_image = image
|
||||
self.current_regions = regions
|
||||
self._update_display()
|
||||
except ValueError:
|
||||
messagebox.showerror("错误", "请输入有效的页码")
|
||||
|
||||
def _prev_page(self):
|
||||
"""显示上一页"""
|
||||
try:
|
||||
current = int(self.current_page.get())
|
||||
if current > 1:
|
||||
self.current_page.set(str(current - 1))
|
||||
self._load_current_page()
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
def _next_page(self):
|
||||
"""显示下一页"""
|
||||
try:
|
||||
current = int(self.current_page.get())
|
||||
if current < self.total_pages:
|
||||
self.current_page.set(str(current + 1))
|
||||
self._load_current_page()
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
def _update_display(self):
|
||||
"""更新显示"""
|
||||
if self.current_image is None:
|
||||
return
|
||||
|
||||
# 获取原始尺寸
|
||||
height, width = self.current_image.shape[:2]
|
||||
|
||||
# 计算缩放后的尺寸
|
||||
new_width = int(width * self.zoom_factor)
|
||||
new_height = int(height * self.zoom_factor)
|
||||
|
||||
# 缩放图片
|
||||
resized_image = cv2.resize(self.current_image, (new_width, new_height))
|
||||
|
||||
# 转换并显示图片
|
||||
image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)
|
||||
image_pil = Image.fromarray(image)
|
||||
self.photo = ImageTk.PhotoImage(image=image_pil)
|
||||
|
||||
# 清除画布
|
||||
self.canvas.delete("all")
|
||||
|
||||
# 显示图片
|
||||
self.canvas.create_image(0, 0, image=self.photo, anchor=tk.NW)
|
||||
|
||||
# 绘制区域
|
||||
if self.current_regions:
|
||||
for i, (x, y, w, h) in enumerate(self.current_regions):
|
||||
# 缩放坐标和尺寸
|
||||
scaled_x = int(x * self.zoom_factor)
|
||||
scaled_y = int(y * self.zoom_factor)
|
||||
scaled_w = int(w * self.zoom_factor)
|
||||
scaled_h = int(h * self.zoom_factor)
|
||||
|
||||
rect_id = self.canvas.create_rectangle(
|
||||
scaled_x, scaled_y,
|
||||
scaled_x + scaled_w,
|
||||
scaled_y + scaled_h,
|
||||
outline="red",
|
||||
width=max(1, int(2 * self.zoom_factor)),
|
||||
tags=f"region_{i+1}"
|
||||
)
|
||||
|
||||
self.canvas.create_text(
|
||||
scaled_x + scaled_w//2,
|
||||
scaled_y - 10 * self.zoom_factor,
|
||||
text=f"目标区域 {i+1} ({w}x{h})",
|
||||
fill="red",
|
||||
tags=f"region_{i+1}"
|
||||
)
|
||||
|
||||
# 绑定鼠标事件
|
||||
self.canvas.tag_bind(
|
||||
f"region_{i+1}",
|
||||
'<Enter>',
|
||||
lambda e, rid=rect_id: self._highlight_region(rid)
|
||||
)
|
||||
self.canvas.tag_bind(
|
||||
f"region_{i+1}",
|
||||
'<Leave>',
|
||||
lambda e, rid=rect_id: self._unhighlight_region(rid)
|
||||
)
|
||||
|
||||
# 更新画布滚动区域
|
||||
self.canvas.config(scrollregion=self.canvas.bbox(tk.ALL))
|
||||
|
||||
def _on_zoom_wheel(self, event):
|
||||
"""处理Ctrl+滚轮缩放"""
|
||||
if event.delta > 0:
|
||||
self.zoom_scale.set(min(200, self.zoom_scale.get() + 10))
|
||||
else:
|
||||
self.zoom_scale.set(max(10, self.zoom_scale.get() - 10))
|
||||
|
||||
def _on_zoom_change(self, value):
|
||||
"""处理缩放变化"""
|
||||
self.zoom_factor = float(value) / 100
|
||||
self._update_display()
|
||||
|
||||
def _on_mousewheel_y(self, event):
|
||||
"""处理垂直方向的鼠标滚轮事件"""
|
||||
if event.num == 4 or event.delta > 0:
|
||||
self.canvas.yview_scroll(-1, "units")
|
||||
elif event.num == 5 or event.delta < 0:
|
||||
self.canvas.yview_scroll(1, "units")
|
||||
|
||||
def _on_mousewheel_x(self, event):
|
||||
"""处理水平方向的鼠标滚轮事件"""
|
||||
if event.num == 4 or event.delta > 0:
|
||||
self.canvas.xview_scroll(-1, "units")
|
||||
elif event.num == 5 or event.delta < 0:
|
||||
self.canvas.xview_scroll(1, "units")
|
||||
|
||||
def _start_drag(self, event):
|
||||
"""开始拖动"""
|
||||
self.canvas.scan_mark(event.x, event.y)
|
||||
|
||||
def _drag(self, event):
|
||||
"""拖动画布"""
|
||||
self.canvas.scan_dragto(event.x, event.y, gain=1)
|
||||
|
||||
def _highlight_region(self, region_id):
|
||||
"""高亮显示区域"""
|
||||
self.canvas.itemconfig(region_id, width=max(2, int(3 * self.zoom_factor)), outline="yellow")
|
||||
|
||||
def _unhighlight_region(self, region_id):
|
||||
"""取消高亮显示"""
|
||||
self.canvas.itemconfig(region_id, width=max(1, int(2 * self.zoom_factor)), outline="red")
|
||||
|
||||
def _fit_to_window(self):
|
||||
"""调整缩放以适应窗口大小"""
|
||||
if self.current_image is None:
|
||||
return
|
||||
|
||||
# 获取窗口和图像尺寸
|
||||
window_width = self.canvas.winfo_width()
|
||||
window_height = self.canvas.winfo_height()
|
||||
image_height, image_width = self.current_image.shape[:2]
|
||||
|
||||
# 计算合适的缩放比例
|
||||
width_ratio = window_width / image_width
|
||||
height_ratio = window_height / image_height
|
||||
|
||||
# 选择较小的比例以确保完全显示
|
||||
new_zoom = min(width_ratio, height_ratio) * 0.9 # 留出一些边距
|
||||
|
||||
# 更新缩放
|
||||
self.zoom_scale.set(new_zoom * 100)
|
||||
|
||||
def _on_window_resize(self, event):
|
||||
"""窗口大小改变时的处理"""
|
||||
# 仅当事件来自主窗口时才处理
|
||||
if event.widget == self.root:
|
||||
# 更新画布滚动区域
|
||||
self.canvas.config(scrollregion=self.canvas.bbox(tk.ALL))
|
||||
|
||||
def _extract_text(self):
|
||||
"""提取所有页面的文字并分别保存到五个文件"""
|
||||
if not self.doc:
|
||||
messagebox.showwarning("警告", "请先加载PDF文件!")
|
||||
return
|
||||
|
||||
try:
|
||||
# 创建output目录(如果不存在)
|
||||
import os
|
||||
output_dir = "output"
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
|
||||
# 创建五个输出文件(使用追加模式)
|
||||
base_name = os.path.basename(self.pdf_path).rsplit('.', 1)[0]
|
||||
output_files = [open(os.path.join(output_dir, f"{base_name}_region{i+1}.txt"), 'a', encoding='utf-8') for i in range(5)]
|
||||
|
||||
# 写入分隔符(带时间戳)
|
||||
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
for i, f in enumerate(output_files):
|
||||
f.write(f"\n\n=== 新的提取任务 {timestamp} ===\n\n")
|
||||
|
||||
# 处理每一页
|
||||
for page_num in range(self.total_pages):
|
||||
# 更新当前页面以获取区域
|
||||
self.current_page.set(str(page_num + 1))
|
||||
self._load_current_page()
|
||||
|
||||
if not self.current_regions or len(self.current_regions) < 5:
|
||||
messagebox.showwarning("警告", f"第 {page_num+1} 页未检测到足够区域,跳过该页")
|
||||
continue
|
||||
|
||||
page = self.doc[page_num]
|
||||
|
||||
# 按y坐标排序处理每个区域
|
||||
sorted_regions = sorted(self.current_regions, key=lambda x: x[1])
|
||||
for region_idx, region in enumerate(sorted_regions[:5]): # 只取前五个区域
|
||||
x, y, w, h = region
|
||||
# 将OpenCV的坐标转换为PDF坐标(除以2因为之前放大了2倍)
|
||||
pdf_x = x / 2
|
||||
pdf_y = y / 2
|
||||
pdf_w = w / 2
|
||||
pdf_h = h / 2
|
||||
|
||||
rect = fitz.Rect(pdf_x, pdf_y, pdf_x + pdf_w, pdf_y + pdf_h)
|
||||
text = page.get_text(clip=rect, sort=True)
|
||||
|
||||
if text.strip():
|
||||
# 将多行文本合并为一行,用空格分隔
|
||||
single_line_text = ' '.join(text.split())
|
||||
output_files[region_idx].write(
|
||||
f"=== 第 {page_num + 1} 页 ===\n"
|
||||
f"区域坐标: ({x}, {y}) 尺寸: {w}x{h}\n"
|
||||
f"{single_line_text}\n"
|
||||
"-------------------\n\n"
|
||||
)
|
||||
|
||||
# 关闭所有文件
|
||||
for f in output_files:
|
||||
f.close()
|
||||
|
||||
messagebox.showinfo("成功", f"文字已分别保存到output文件夹中的:\n"
|
||||
f"{base_name}_region1.txt\n"
|
||||
f"{base_name}_region2.txt\n"
|
||||
f"{base_name}_region3.txt\n"
|
||||
f"{base_name}_region4.txt\n"
|
||||
f"{base_name}_region5.txt")
|
||||
|
||||
except Exception as e:
|
||||
messagebox.showerror("错误", f"提取文字时发生错误:{str(e)}")
|
||||
finally:
|
||||
# 确保文件被关闭
|
||||
for f in output_files:
|
||||
if not f.closed:
|
||||
f.close()
|
||||
|
||||
def main():
|
||||
root = tk.Tk()
|
||||
app = PDFViewer(root)
|
||||
root.mainloop()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
39
pdf/pdf_total_processor.py
Normal file
39
pdf/pdf_total_processor.py
Normal file
@ -0,0 +1,39 @@
|
||||
import fitz # PyMuPDF
|
||||
|
||||
def extract_vertical_text(pdf_path):
|
||||
"""
|
||||
提取竖排文本(从右至左阅读顺序)并包含页码信息
|
||||
"""
|
||||
doc = fitz.open(pdf_path)
|
||||
full_text = []
|
||||
|
||||
for page in doc:
|
||||
# 添加页码标识
|
||||
full_text.append(f"=== 第{page.number + 1}页 ===")
|
||||
|
||||
# 旋转页面以适应竖排文本阅读方向
|
||||
page.set_rotation(270)
|
||||
|
||||
# 获取并排序文本块
|
||||
blocks = page.get_text("blocks", flags=fitz.TEXT_PRESERVE_LIGATURES)
|
||||
blocks.sort(key=lambda b: (-b[2], b[1]))
|
||||
|
||||
# 收集当前页文本
|
||||
page_text = []
|
||||
for b in blocks:
|
||||
text = b[4].strip()
|
||||
if text:
|
||||
page_text.append(text)
|
||||
full_text.append('\n'.join(page_text))
|
||||
|
||||
return '\n\n'.join(full_text)
|
||||
|
||||
# 修改后的使用示例
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
text = extract_vertical_text('origin_second.pdf')
|
||||
|
||||
# 写入文件
|
||||
with open('output/output.txt', 'w', encoding='utf-8') as f:
|
||||
f.write(text)
|
||||
print("文本已保存到 output.txt")
|
||||
145
sync_tags.py
Normal file
145
sync_tags.py
Normal file
@ -0,0 +1,145 @@
|
||||
#!/usr/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
# 将macOS 标签同步到 NFO 文件
|
||||
|
||||
import sys
|
||||
import subprocess
|
||||
import os
|
||||
import xml.etree.ElementTree as ET
|
||||
import ast
|
||||
import xattr
|
||||
import plistlib
|
||||
|
||||
# --- CONFIGURATION ---
|
||||
# Add any tags you want to exclude from syncing here.
|
||||
# For example: EXCLUDED_TAGS = {'TagToExclude1', 'TagToExclude2'}
|
||||
EXCLUDED_TAGS = {'绿色'}
|
||||
|
||||
# Video file extensions to look for.
|
||||
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.avi', '.mov', '.wmv', '.flv'}
|
||||
# --- END CONFIGURATION ---
|
||||
|
||||
def get_finder_tags(filepath):
|
||||
|
||||
tags = get_macos_tags(filepath)
|
||||
|
||||
return parse_tags(tags)
|
||||
|
||||
def get_macos_tags(file_path):
|
||||
try:
|
||||
# 获取扩展属性内容(字节串)
|
||||
attrs = xattr.xattr(file_path)
|
||||
tag_data = attrs.get('com.apple.metadata:_kMDItemUserTags')
|
||||
|
||||
# 解码 Binary plist
|
||||
plist = plistlib.loads(tag_data)
|
||||
|
||||
# plist 是标签的字符串列表
|
||||
return plist
|
||||
except Exception as e:
|
||||
# print(f"读取标签失败: {e}")
|
||||
return []
|
||||
|
||||
def parse_tags(tags):
|
||||
parsed = []
|
||||
for tag in tags:
|
||||
if '\n' in tag:
|
||||
name, color = tag.split('\n')
|
||||
# parsed.append((name, int(color)))
|
||||
parsed.append(name)
|
||||
else:
|
||||
parsed.append(tag)
|
||||
return parsed
|
||||
|
||||
def sync_tags_to_nfo(video_path, excluded_tags):
|
||||
"""
|
||||
Syncs Finder tags to a .nfo file, creating or overwriting it.
|
||||
All existing tags in the .nfo file will be replaced.
|
||||
"""
|
||||
# 1. Get Finder tags and filter out the excluded ones.
|
||||
finder_tags = set(get_finder_tags(video_path))
|
||||
tags_to_sync = finder_tags - excluded_tags
|
||||
|
||||
print(f"Found Finder tags: {list(finder_tags) or 'None'}")
|
||||
if not tags_to_sync:
|
||||
print("No tags to sync after exclusion. Skipping NFO update.")
|
||||
return
|
||||
|
||||
print(f"Tags to be written to NFO: {list(tags_to_sync)}")
|
||||
|
||||
# 2. Determine the .nfo file path.
|
||||
base_name = os.path.splitext(video_path)[0]
|
||||
nfo_path = base_name + '.nfo'
|
||||
|
||||
root = None
|
||||
tree = None
|
||||
|
||||
# 3. Read existing NFO or create a new XML root.
|
||||
if os.path.exists(nfo_path):
|
||||
try:
|
||||
tree = ET.parse(nfo_path)
|
||||
root = tree.getroot()
|
||||
# Remove all existing 'tag' elements to ensure a clean sync.
|
||||
for tag_elem in root.findall('tag'):
|
||||
root.remove(tag_elem)
|
||||
except ET.ParseError:
|
||||
print(f"Warning: Could not parse '{os.path.basename(nfo_path)}'. A new file will be created.")
|
||||
root = ET.Element('movie')
|
||||
else:
|
||||
print(f"NFO file '{os.path.basename(nfo_path)}' not found. Creating a new one.")
|
||||
root = ET.Element('movie')
|
||||
|
||||
# 4. Add the filtered Finder tags to the XML structure.
|
||||
for tag_text in sorted(list(tags_to_sync)): # Sort for consistent order
|
||||
new_tag_element = ET.Element('tag')
|
||||
new_tag_element.text = tag_text
|
||||
root.append(new_tag_element)
|
||||
|
||||
# 5. Write the updated XML structure back to the .nfo file.
|
||||
try:
|
||||
if tree is None:
|
||||
tree = ET.ElementTree(root)
|
||||
|
||||
# Indent the XML for better readability (requires Python 3.9+)
|
||||
try:
|
||||
ET.indent(tree, space=" ", level=0)
|
||||
except AttributeError:
|
||||
# ET.indent is not available in Python < 3.9, file will not be pretty-printed.
|
||||
pass
|
||||
|
||||
tree.write(nfo_path, encoding='utf-8', xml_declaration=True)
|
||||
print(f"Successfully synced tags to '{os.path.basename(nfo_path)}'")
|
||||
except Exception as e:
|
||||
print(f"Error: Failed to write to NFO file '{nfo_path}': {e}")
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main function to scan a directory for videos and sync their tags.
|
||||
"""
|
||||
if len(sys.argv) < 2:
|
||||
print(f"Usage: {sys.argv[0]} <directory_path>")
|
||||
sys.exit(1)
|
||||
|
||||
target_directory = sys.argv[1]
|
||||
|
||||
if not os.path.isdir(target_directory):
|
||||
print(f"Error: Provided path '{target_directory}' is not a valid directory.")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"Starting scan in directory: '{target_directory}'")
|
||||
print(f"Excluded tags: {list(EXCLUDED_TAGS) or 'None'}")
|
||||
print("-" * 40)
|
||||
|
||||
for dirpath, _, filenames in os.walk(target_directory):
|
||||
for filename in filenames:
|
||||
file_ext = os.path.splitext(filename)[1].lower()
|
||||
if file_ext in VIDEO_EXTENSIONS:
|
||||
video_file_path = os.path.join(dirpath, filename)
|
||||
print(f"\nProcessing: '{os.path.basename(video_file_path)}'")
|
||||
sync_tags_to_nfo(video_file_path, EXCLUDED_TAGS)
|
||||
|
||||
print("\n" + "-" * 40)
|
||||
print("Script finished.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
99
word/README.md
Normal file
99
word/README.md
Normal file
@ -0,0 +1,99 @@
|
||||
# Word文档词频统计分析工具
|
||||
|
||||
这是一个用于分析Word文档词频的Python工具,支持中文分词、词频统计、可视化展示和结果导出。
|
||||
|
||||
## 功能特性
|
||||
|
||||
- 📖 读取Word文档(.docx格式)
|
||||
- 🔤 中文文本分词(基于jieba)
|
||||
- 📊 词频统计分析
|
||||
- 📈 生成词云图和词频柱状图
|
||||
- 📋 导出Excel分析报告
|
||||
- 🚫 智能过滤停用词
|
||||
|
||||
## 安装依赖
|
||||
|
||||
在运行脚本之前,请先安装所需的Python包:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## 使用方法
|
||||
|
||||
### 1. 基本使用
|
||||
|
||||
将Word文档放在脚本同一目录下,然后运行:
|
||||
|
||||
```bash
|
||||
python word_frequency_analyzer.py
|
||||
```
|
||||
|
||||
### 2. 自定义目录
|
||||
|
||||
```python
|
||||
from word_frequency_analyzer import WordFrequencyAnalyzer
|
||||
|
||||
# 指定Word文档所在目录
|
||||
analyzer = WordFrequencyAnalyzer('/path/to/your/word/documents')
|
||||
results = analyzer.analyze_all_documents()
|
||||
analyzer.print_results(results)
|
||||
```
|
||||
|
||||
### 3. 单个文档分析
|
||||
|
||||
```python
|
||||
analyzer = WordFrequencyAnalyzer()
|
||||
result = analyzer.analyze_single_document('your_document.docx')
|
||||
```
|
||||
|
||||
## 输出文件
|
||||
|
||||
脚本运行后会生成以下文件:
|
||||
|
||||
- `词频分析结果.xlsx` - Excel格式的详细分析报告
|
||||
- `词云图_[文档名].png` - 每个文档的词云图
|
||||
- `词频图_[文档名].png` - 每个文档的词频柱状图
|
||||
|
||||
## 分析结果包含
|
||||
|
||||
- 总词数统计
|
||||
- 不重复词数统计
|
||||
- 高频词排行榜(前20名)
|
||||
- 词云可视化
|
||||
- 词频柱状图
|
||||
- Excel详细报告
|
||||
|
||||
## 支持的文档格式
|
||||
|
||||
- Microsoft Word (.docx)
|
||||
|
||||
## 注意事项
|
||||
|
||||
1. 确保Word文档为.docx格式(不支持.doc格式)
|
||||
2. 脚本会自动过滤常见停用词和标点符号
|
||||
3. 词云图需要系统支持中文字体
|
||||
4. 建议在Python 3.7+环境下运行
|
||||
|
||||
## 自定义配置
|
||||
|
||||
### 修改停用词
|
||||
|
||||
可以在`WordFrequencyAnalyzer`类的`_load_stop_words`方法中添加或删除停用词。
|
||||
|
||||
### 调整分析参数
|
||||
|
||||
- 修改`get_top_words`方法的`top_n`参数来改变高频词数量
|
||||
- 调整词云图和柱状图的样式参数
|
||||
|
||||
## 故障排除
|
||||
|
||||
如果遇到字体相关错误,请确保系统安装了中文字体,或修改脚本中的字体路径。
|
||||
|
||||
macOS用户可以使用:
|
||||
- `/System/Library/Fonts/PingFang.ttc`
|
||||
- `/System/Library/Fonts/STHeiti Light.ttc`
|
||||
|
||||
Windows用户可以使用:
|
||||
- `C:/Windows/Fonts/simhei.ttf`
|
||||
- `C:/Windows/Fonts/msyh.ttc`
|
||||
6
word/requirements.txt
Normal file
6
word/requirements.txt
Normal file
@ -0,0 +1,6 @@
|
||||
python-docx==0.8.11
|
||||
jieba==0.42.1
|
||||
matplotlib==3.7.2
|
||||
wordcloud==1.9.2
|
||||
pandas==2.0.3
|
||||
openpyxl==3.1.2
|
||||
433
word/word_frequency_analyzer.py
Normal file
433
word/word_frequency_analyzer.py
Normal file
@ -0,0 +1,433 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Word文档词频统计分析工具
|
||||
支持读取Word文档,进行中文分词和词频统计
|
||||
"""
|
||||
|
||||
import os
|
||||
import re
|
||||
from collections import Counter
|
||||
from docx import Document
|
||||
import jieba
|
||||
import matplotlib.pyplot as plt
|
||||
from wordcloud import WordCloud
|
||||
import pandas as pd
|
||||
from typing import List, Dict, Tuple
|
||||
|
||||
# 设置matplotlib支持中文字体
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei', 'Arial Unicode MS', 'DejaVu Sans']
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
|
||||
class WordFrequencyAnalyzer:
|
||||
def __init__(self, input_dir: str = None, output_dir: str = None):
|
||||
"""
|
||||
初始化词频分析器
|
||||
|
||||
Args:
|
||||
input_dir: Word文档输入目录,默认为当前目录下的input文件夹
|
||||
output_dir: 结果输出目录,默认为当前目录下的output文件夹
|
||||
"""
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
self.input_dir = input_dir or os.path.join(current_dir, 'input')
|
||||
self.output_dir = output_dir or os.path.join(current_dir, 'output')
|
||||
|
||||
# 确保输入和输出目录存在
|
||||
os.makedirs(self.input_dir, exist_ok=True)
|
||||
os.makedirs(self.output_dir, exist_ok=True)
|
||||
|
||||
self.stop_words = self._load_stop_words()
|
||||
|
||||
def _load_stop_words(self) -> set:
|
||||
"""加载停用词列表"""
|
||||
# 常见中文停用词
|
||||
stop_words = {
|
||||
'的', '了', '在', '是', '我', '有', '和', '就', '不', '人', '都', '一', '一个',
|
||||
'上', '也', '很', '到', '说', '要', '去', '你', '会', '着', '没有', '看', '好',
|
||||
'自己', '这', '那', '里', '就是', '还', '把', '比', '或者', '因为', '所以',
|
||||
'但是', '如果', '这样', '那样', '可以', '能够', '应该', '必须', '已经',
|
||||
'正在', '将要', '可能', '也许', '当然', '确实', '真的', '非常', '特别',
|
||||
'尤其', '特殊', '一般', '通常', '经常', '总是', '从来', '永远', '马上',
|
||||
'立即', '现在', '以前', '以后', '今天', '明天', '昨天', '这里', '那里',
|
||||
'哪里', '什么', '怎么', '为什么', '多少', '几个', '一些', '许多', '大量',
|
||||
'少量', '全部', '部分', '每个', '各种', '不同', '相同', '类似', '差不多',
|
||||
'大概', '左右', '之间', '以上', '以下', '包括', '除了', '关于', '对于',
|
||||
'根据', '按照', '通过', '由于', '为了', '虽然', '尽管', '然而', '不过',
|
||||
'而且', '另外', '此外', '同时', '首先', '其次', '最后', '总之', '因此',
|
||||
'所以', '于是', '然后', '接着', '随后', '后来', '最终', '结果', '这种',
|
||||
'那种', '各种', '某种', '任何', '所有', '整个', '全部', '完全', '十分',
|
||||
'相当', '比较', '更加', '最', '极其', '非常', '很', '太', '挺', '蛮',
|
||||
'还是', '或者', '要么', '不是', '没', '别', '不要', '不能', '不会',
|
||||
'不用', '无法', '无', '无论', '不管', '无论如何', '总之', '反正',
|
||||
'?', '!', '。', ',', '、', ';', ':', '"', '"', ''', ''', '(', ')',
|
||||
'【', '】', '《', '》', '〈', '〉', '「', '」', '『', '』', '〔', '〕',
|
||||
'…', '—', '-', '·', '~', '#', '&', '*', '+', '=', '<', '>',
|
||||
'%', '@', '¥', '£', '¢', '€', '$', '¥', '£', '¢', '₹', '₽',
|
||||
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
||||
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
|
||||
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
|
||||
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
|
||||
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'
|
||||
}
|
||||
return stop_words
|
||||
|
||||
def read_docx(self, file_path: str) -> str:
|
||||
"""
|
||||
读取Word文档内容
|
||||
|
||||
Args:
|
||||
file_path: Word文档路径
|
||||
|
||||
Returns:
|
||||
文档文本内容
|
||||
"""
|
||||
try:
|
||||
doc = Document(file_path)
|
||||
text = ""
|
||||
for paragraph in doc.paragraphs:
|
||||
text += paragraph.text + "\n"
|
||||
return text
|
||||
except Exception as e:
|
||||
print(f"读取文档 {file_path} 时出错: {e}")
|
||||
return ""
|
||||
|
||||
def clean_text(self, text: str) -> str:
|
||||
"""
|
||||
清理文本,去除特殊字符和多余空白
|
||||
|
||||
Args:
|
||||
text: 原始文本
|
||||
|
||||
Returns:
|
||||
清理后的文本
|
||||
"""
|
||||
# 去除特殊字符,保留中文、英文、数字
|
||||
text = re.sub(r'[^\u4e00-\u9fa5a-zA-Z0-9\s]', '', text)
|
||||
# 去除多余空白
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
return text
|
||||
|
||||
def segment_text(self, text: str) -> List[str]:
|
||||
"""
|
||||
中文分词
|
||||
|
||||
Args:
|
||||
text: 待分词文本
|
||||
|
||||
Returns:
|
||||
分词结果列表
|
||||
"""
|
||||
# 使用jieba进行分词
|
||||
words = jieba.lcut(text)
|
||||
|
||||
# 过滤停用词和长度小于2的词
|
||||
filtered_words = []
|
||||
for word in words:
|
||||
word = word.strip()
|
||||
if (len(word) >= 2 and
|
||||
word not in self.stop_words and
|
||||
not word.isdigit() and
|
||||
not word.isspace()):
|
||||
filtered_words.append(word)
|
||||
|
||||
return filtered_words
|
||||
|
||||
def calculate_frequency(self, words: List[str]) -> Dict[str, int]:
|
||||
"""
|
||||
计算词频
|
||||
|
||||
Args:
|
||||
words: 词语列表
|
||||
|
||||
Returns:
|
||||
词频字典
|
||||
"""
|
||||
return dict(Counter(words))
|
||||
|
||||
def get_top_words(self, word_freq: Dict[str, int], top_n: int = 20) -> List[Tuple[str, int]]:
|
||||
"""
|
||||
获取高频词
|
||||
|
||||
Args:
|
||||
word_freq: 词频字典
|
||||
top_n: 返回前N个高频词
|
||||
|
||||
Returns:
|
||||
高频词列表,格式为[(词, 频次), ...]
|
||||
"""
|
||||
return sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:top_n]
|
||||
|
||||
def analyze_single_document(self, file_path: str) -> Dict:
|
||||
"""
|
||||
分析单个文档
|
||||
|
||||
Args:
|
||||
file_path: 文档路径
|
||||
|
||||
Returns:
|
||||
分析结果字典
|
||||
"""
|
||||
print(f"正在分析文档: {os.path.basename(file_path)}")
|
||||
|
||||
# 读取文档
|
||||
text = self.read_docx(file_path)
|
||||
if not text:
|
||||
return {}
|
||||
|
||||
# 清理文本
|
||||
cleaned_text = self.clean_text(text)
|
||||
|
||||
# 分词
|
||||
words = self.segment_text(cleaned_text)
|
||||
|
||||
# 计算词频
|
||||
word_freq = self.calculate_frequency(words)
|
||||
|
||||
# 获取高频词
|
||||
top_words = self.get_top_words(word_freq, 30)
|
||||
|
||||
return {
|
||||
'file_name': os.path.basename(file_path),
|
||||
'total_words': len(words),
|
||||
'unique_words': len(word_freq),
|
||||
'word_frequency': word_freq,
|
||||
'top_words': top_words,
|
||||
'text_length': len(text),
|
||||
'cleaned_text_length': len(cleaned_text)
|
||||
}
|
||||
|
||||
def analyze_all_documents(self) -> Dict:
|
||||
"""
|
||||
分析输入目录下所有Word文档
|
||||
|
||||
Returns:
|
||||
所有文档的分析结果
|
||||
"""
|
||||
results = {}
|
||||
docx_files = [f for f in os.listdir(self.input_dir) if f.endswith('.docx')]
|
||||
|
||||
if not docx_files:
|
||||
print(f"在输入目录 {self.input_dir} 中未找到Word文档文件")
|
||||
return results
|
||||
|
||||
print(f"在输入目录中找到 {len(docx_files)} 个Word文档")
|
||||
|
||||
for file_name in docx_files:
|
||||
file_path = os.path.join(self.input_dir, file_name)
|
||||
result = self.analyze_single_document(file_path)
|
||||
if result:
|
||||
results[file_name] = result
|
||||
|
||||
return results
|
||||
|
||||
def create_word_cloud(self, word_freq: Dict[str, int], title: str = "词云图",
|
||||
save_path: str = None) -> None:
|
||||
"""
|
||||
生成词云图
|
||||
|
||||
Args:
|
||||
word_freq: 词频字典
|
||||
title: 图表标题
|
||||
save_path: 保存路径
|
||||
"""
|
||||
if not word_freq:
|
||||
print("词频数据为空,无法生成词云图")
|
||||
return
|
||||
|
||||
# 尝试多个字体路径
|
||||
font_paths = [
|
||||
'/System/Library/Fonts/PingFang.ttc',
|
||||
'/System/Library/Fonts/STHeiti Light.ttc',
|
||||
'/System/Library/Fonts/Helvetica.ttc',
|
||||
'/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',
|
||||
None # 使用默认字体
|
||||
]
|
||||
|
||||
font_path = None
|
||||
for path in font_paths:
|
||||
if path is None or os.path.exists(path):
|
||||
font_path = path
|
||||
break
|
||||
|
||||
# 创建词云
|
||||
wordcloud_params = {
|
||||
'width': 800,
|
||||
'height': 600,
|
||||
'background_color': 'white',
|
||||
'max_words': 100,
|
||||
'colormap': 'viridis'
|
||||
}
|
||||
|
||||
if font_path:
|
||||
wordcloud_params['font_path'] = font_path
|
||||
|
||||
try:
|
||||
wordcloud = WordCloud(**wordcloud_params).generate_from_frequencies(word_freq)
|
||||
except Exception as e:
|
||||
print(f"生成词云图时出错: {e}")
|
||||
print("尝试使用默认字体...")
|
||||
wordcloud_params.pop('font_path', None)
|
||||
wordcloud = WordCloud(**wordcloud_params).generate_from_frequencies(word_freq)
|
||||
|
||||
# 绘制图像
|
||||
plt.figure(figsize=(10, 8))
|
||||
plt.imshow(wordcloud, interpolation='bilinear')
|
||||
plt.axis('off')
|
||||
plt.title(title, fontsize=16, pad=20)
|
||||
|
||||
if save_path:
|
||||
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
||||
print(f"词云图已保存到: {save_path}")
|
||||
else:
|
||||
# 不显示图像,直接关闭
|
||||
plt.close()
|
||||
|
||||
def create_frequency_chart(self, top_words: List[Tuple[str, int]],
|
||||
title: str = "词频统计", save_path: str = None) -> None:
|
||||
"""
|
||||
生成词频柱状图
|
||||
|
||||
Args:
|
||||
top_words: 高频词列表
|
||||
title: 图表标题
|
||||
save_path: 保存路径
|
||||
"""
|
||||
if not top_words:
|
||||
print("高频词数据为空,无法生成图表")
|
||||
return
|
||||
|
||||
words, frequencies = zip(*top_words)
|
||||
|
||||
plt.figure(figsize=(12, 8))
|
||||
bars = plt.bar(range(len(words)), frequencies, color='skyblue', alpha=0.8)
|
||||
|
||||
# 设置x轴标签
|
||||
plt.xticks(range(len(words)), words, rotation=45, ha='right')
|
||||
plt.xlabel('词语')
|
||||
plt.ylabel('频次')
|
||||
plt.title(title, fontsize=16, pad=20)
|
||||
|
||||
# 在柱子上显示数值
|
||||
for bar, freq in zip(bars, frequencies):
|
||||
plt.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.1,
|
||||
str(freq), ha='center', va='bottom')
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
if save_path:
|
||||
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
||||
print(f"词频图表已保存到: {save_path}")
|
||||
else:
|
||||
# 不显示图像,直接关闭
|
||||
plt.close()
|
||||
|
||||
def export_to_excel(self, results: Dict, save_path: str = None) -> None:
|
||||
"""
|
||||
导出分析结果到Excel
|
||||
|
||||
Args:
|
||||
results: 分析结果
|
||||
save_path: 保存路径
|
||||
"""
|
||||
if not results:
|
||||
print("没有分析结果可导出")
|
||||
return
|
||||
|
||||
if not save_path:
|
||||
save_path = os.path.join(self.output_dir, "词频分析结果.xlsx")
|
||||
|
||||
with pd.ExcelWriter(save_path, engine='openpyxl') as writer:
|
||||
# 创建汇总表
|
||||
summary_data = []
|
||||
for file_name, result in results.items():
|
||||
summary_data.append({
|
||||
'文档名称': result['file_name'],
|
||||
'总词数': result['total_words'],
|
||||
'不重复词数': result['unique_words'],
|
||||
'文本长度': result['text_length'],
|
||||
'清理后文本长度': result['cleaned_text_length']
|
||||
})
|
||||
|
||||
summary_df = pd.DataFrame(summary_data)
|
||||
summary_df.to_excel(writer, sheet_name='汇总统计', index=False)
|
||||
|
||||
# 为每个文档创建详细词频表
|
||||
for file_name, result in results.items():
|
||||
if result['top_words']:
|
||||
df_data = []
|
||||
for word, freq in result['top_words']:
|
||||
df_data.append({'词语': word, '频次': freq})
|
||||
|
||||
df = pd.DataFrame(df_data)
|
||||
sheet_name = result['file_name'][:20] # Excel工作表名称限制
|
||||
df.to_excel(writer, sheet_name=sheet_name, index=False)
|
||||
|
||||
print(f"分析结果已导出到: {save_path}")
|
||||
|
||||
def print_results(self, results: Dict) -> None:
|
||||
"""
|
||||
打印分析结果
|
||||
|
||||
Args:
|
||||
results: 分析结果
|
||||
"""
|
||||
if not results:
|
||||
print("没有分析结果")
|
||||
return
|
||||
|
||||
print("\n" + "="*60)
|
||||
print("Word文档词频分析结果")
|
||||
print("="*60)
|
||||
|
||||
for file_name, result in results.items():
|
||||
print(f"\n文档: {result['file_name']}")
|
||||
print(f"总词数: {result['total_words']}")
|
||||
print(f"不重复词数: {result['unique_words']}")
|
||||
print(f"文本长度: {result['text_length']} 字符")
|
||||
|
||||
print(f"\n前20个高频词:")
|
||||
for i, (word, freq) in enumerate(result['top_words'][:20], 1):
|
||||
print(f"{i:2d}. {word:<10} {freq:>4} 次")
|
||||
|
||||
print("\n" + "="*60)
|
||||
|
||||
def main():
|
||||
"""主函数"""
|
||||
# 获取当前脚本所在目录
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
# 创建分析器
|
||||
analyzer = WordFrequencyAnalyzer()
|
||||
|
||||
print("开始分析Word文档...")
|
||||
|
||||
# 分析所有文档
|
||||
results = analyzer.analyze_all_documents()
|
||||
|
||||
if not results:
|
||||
print("没有找到可分析的文档")
|
||||
return
|
||||
|
||||
# 打印结果
|
||||
analyzer.print_results(results)
|
||||
|
||||
# 导出Excel
|
||||
analyzer.export_to_excel(results)
|
||||
|
||||
# 为每个文档生成可视化图表
|
||||
for file_name, result in results.items():
|
||||
if result['word_frequency'] and result['top_words']:
|
||||
# 生成词云图
|
||||
cloud_title = f"词云图 - {result['file_name']}"
|
||||
cloud_path = os.path.join(analyzer.output_dir, f"词云图_{result['file_name']}.png")
|
||||
analyzer.create_word_cloud(result['word_frequency'], cloud_title, cloud_path)
|
||||
|
||||
# 生成词频图表
|
||||
chart_title = f"词频统计 - {result['file_name']}"
|
||||
chart_path = os.path.join(analyzer.output_dir, f"词频图_{result['file_name']}.png")
|
||||
analyzer.create_frequency_chart(result['top_words'][:15], chart_title, chart_path)
|
||||
|
||||
print("\n分析完成!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
x
Reference in New Issue
Block a user